United States Patent

US006654861B2

(12) (10) Patent No.: US 6,654,861 B2
Mora 5) Date of Patent: Nov. 25, 2003
(549) METHOD TO MANAGE MULTIPLE 6,137,807 A * 10/2000 Rusu et al. 370/429
COMMUNICATION QUEUES IN AN 8-BIT * cited by examiner
MICROCONTROLLER
Primary Examiner—Reba 1. Elmore
(75) Inventor: Oscar Mora, Caracas (VE) (74) Attorney, Agent, or Firm—Jeffrey Furr
(73) Assignee: Smart Matic Corp., Boca Raton 7 ABSTRACT
)) o) A method and algorithm to handle a memory bank queue
(*) Notice: Sub]ect. to any d1sc1a1mer,. the term of this using a low processing power 8-bit microcontroller is pro-
patent is extended or adjusted under 35 vided. The microcontroller is used to receive information in
U.S.C. 154(b) by 70 days. the form of a data packet from a communication interface
shared with an external system. Each received packet is
(21) Appl. No.: 09/682,093 temporarily stored in a logical FIFO queue while the first
S packet in the queue packet is processed, modified or decoded
(22) Filed: Jul. 18, 2001 according to a process or algorithm made by the user. The
(65) Prior Publication Data result keeps the same queue position until a second system
is able to receive it through a second communication inter-
US 2003/0018867 Al Jan. 23, 2003 face. In the same manner, any information packet coming
(51) Inte CL7 o GOG6F 12/00 from the second system is queued and processed back to
(52) US.CL 711/156; 711/154 retrieve a result to the first processor. This invention pro-
S e ’ vides a mechanism to maintain two or more logic queues
(58) Field of Searchccccoeeee. 711/156, 154 sharing the same physical RAM, one for cach kind of
(56) References Cited process related to packets flowing from one interface to

U.S. PATENT DOCUMENTS

3,876,979 A * 4/1975 Winn et al. 714/748
5,218,670 A * 6/1993 Sodek et al. 358/1.16
5,265,257 A * 11/1993 Simcoe et al. 710/263
5,764,938 A * 6/1998 White et al. 712/200
5,826,053 A * 10/1998 Wittccuueeeeeee ... 712/210
5,892,979 A * 4/1999 Shiraki et al. 710/52
6,038,621 A * 3/2000 Gale et al.c.cceeeeennnee. 710/56

210~ 212~ 214~ 216
A .
Nt

R W&s\ \:'\‘*\\\

RO KRN
X) X \'\ N, 3
RSN

114
114

another. A banked memory structure is used, considering
each bank as a generic memory buffer that can be occupied
by any of the existing queues. Adequate information about
each queue is stored to keep the queue’s logic order.
Appropriate low-complexity algorithms have been defined
to use such information to manage the available buffers,
suitable to the processing power of an 8-bit microcontroller.

11 Claims, 8 Drawing Sheets

ABF=100 %310
NAB=3 "
QCTR=3

s 312
Lop—2 312

U.S. Patent Nov. 25, 2003 Sheet 1 of 8 US 6,654,861 B2

/’1 12

116 1166
2) | PROCESS |, 2,
I s 114
B |B|B B
1 2 3 n

\110

Fig 1

-Prior Art-

U.S. Patent Nov. 25, 2003 Sheet 2 of 8 US 6,654,861 B2

Sheet 3 of 8

; o QNW\
AT
0

i

K |....mum
ol
.

o+

hkqﬂ k\m

Nov. 25, 2003

U.S. Patent

21&\212\\214\\216\

218

114

Fig 2b

US 6,654,861 B2

Sheet 4 of 8

Nov. 25, 2003

U.S. Patent

NQP=x

Fig 3a

LSS
.
. I \ML .n\u! / A
e

n.: 'n,b\ O
N
NQP=2

114

A
NQP=1

210~ 212~ 214~ 216
RN L

213

U.S. Patent Nov. 25, 2003 Sheet 5 of 8 US 6,654,861 B2

210 212 214 2
‘\\ ‘\\‘ \"-
N7 N ABP-——OOOO}g]O
. NAB=X

N eor=2 L5
314 §

314 R FQP=0
LQP=2
QCTR=2
FQP=1 }312
A LQP=3
N /
'
114

U.S. Patent Nov. 25, 2003 Sheet 6 of 8 US 6,654,861 B2

Locate NAB
Set flagto O

Store first byte

5

Locate LQP
FOQP=NAB NQP=NAB
4 l
QCTR=QCTR+1
LQP=NAB 4

430

1

Search for new
NAB

i

Fig4

U.S. Patent Nov. 25, 2003 Sheet 7 of 8 US 6,654,861 B2

510

520a

Receive
done?

Execute

process
Send first
result byte

h 4

516p X 518b 520k

QCTRI= NO Locate Receive
0? PQP done?
YES

L4 Execute

process
Send first ¥

result byte
518c 520c

Locate

FQP

Receive
done?

Execute

process
Send first >
result byte

Figs

U.S. Patent Nov. 25, 2003 Sheet 8 of 8 US 6,654,861 B2

£10
Start

$12

QCTR=
QCTR-1

NABR=FQP

618 l

FQP=NQP

520

Fig 6

US 6,654,861 B2

1

METHOD TO MANAGE MULTIPLE
COMMUNICATION QUEUES IN AN 8-BIT
MICROCONTROLLER

BACKGROUND OF INVENTION

1. Field of Invention

This invention relates to the handling of FIFO commu-
nication queues in a low processing power 8-bit microcon-
troller.

2. Discussion of Prior Art

The programming of a given process or algorithm in a low
processing power 8-bit microcontroller (8-BMC), consisting
of receiving an input data and executing a process over such
data to obtain a result, can contain the elements shown on
FIG. 1.

An 8-BMC 110 is progranmied with a bi-directional
process 112. Such process uses a banked RAM 114, which
consists of a series of memory banks B1, B2, B3 . . . Bn
controlled by the process. The RAM (random access
memory) 114 comprises the internal 8-bit registers available
in the microcontroller, any external RAM, or any combina-
tion of both. In any case, each bank is considered a memory
buffer. Two interfaces (1164, 116b) connect the 8-BMC 110
to external systems or microprocessors not shown on the
figure. The process 112 takes a size-defined packet of bytes
coming from the interface 116a and stores it in any of the
memory banks available in the RAM 114 to finally apply the
process itself and return a result through the interface 116b.
In the same manner, any information coming from, the
interface 1165 goes through a similar mechanism with an
inverse process to obtain an output at interace 116a.

Those skilled in the art can assume such interfaces as any
kind of communication standards widely used in
microcomputers, like an asynchronous serial port or a syn-
chronous SPI (Serial Peripheral Interface) port, an I*C
master-slave port, a parallel slave port or any other user-
defined method of communication. It is very common to find
the above communication standards implemented on the
hardware itself on an 8-BMC. A hardware implementation
avoids the need of programming the standard, increasing the
device’s general performance. Rather, the sending and
receiving mechanism is made through some specialized
memory positions accessible by the program.

Due to the possible use of different interfaces, the time
needed to transfer an information packet through the inter-
face 116a won’t be the same as a transfer at interface 116b.
For example, a serial transfer will last longer than a parallel
information transfer. Furthermore, the size of the informa-
tion could be different from interface 1164 to interface 1165,
since there is a process 112 involved. Such process could be
for example a communication protocol encoder-decoder or
a security verification algorithm, so the information coming
in from one interface could be larger or smaller than the
information coming out to the second interface.

Furthermore, the systems behind each interface could
have different processing power and speed, and usually the
faster one could handle more information by time unit than
the slower one. Additionally, the amount of information sent
or received by those systems can vary dynamically accord-
ing to itS own program Or process.

Thus the interface speed, the size of the information
packets, the involved kind of process and the behavior of the
external systems determine the amount of information pass-
ing through the 8-BMC. In order to handle the information

10

15

20

25

30

35

40

45

50

55

60

65

2

going from interface 1164 to interface 1165 or vice versa,
two different memory queues are needed to temporally store
and process each packet.

A static assignment of memory buffers to each queue is a
simple solution. However, any variation on the mentioned
factors could increase or decrease in a given moment the
traffic of packets traveling in any direction. Since the buffers
assignment is static, those assigned to the low traffic transfer
would be unused, while the high traffic transfer could not be
assisted because of the lack of memory space.

In the recent past there have been different approaches to
the queue management mechanism (e.g. U.S. Pat. No.
6,137,807). That invention proposes a temporal buffering of
data in the form of logical queues to supply a series of output
ports. However, such invention is oriented to data buffering
and queue control only, without the possibility of including
any kind of data processing or data transformation. That
invention also proposes the use of a specialized ASIC
(application specific integrated circuit) to physically imple-
ment the memory controller. Even when an ASIC optimizes
the performance, it does not offer the programmable flex-
ibility of a microcontroller. Furthermore, that implementa-
tion considers unidirectional data flow by defining an input-
only source and an output-only destination.

It is the intention of this invention to overcome such
limitations providing an efficient method to handle multiple
communication queues capable of transporting information
packets between two or more communication interfaces with
a bidirectional communication.

SUMMARY OF INVENTION

The present invention comprises a method for handling
multiple logical communication queues sharing one physical
memory space. Having a banked RAM, each bank is used as
an individual memory buffer independent of the existing
type of queues. Since there is no static memory buffer
assignment to each type of queue, all banks are available for
all queues, making efficient use of memory resources even
when the traffic generated by each queue can vary dynami-
cally.

The hardware platform is an 8-bit microcontroller which
contains both a programmed process to be applied to any
incoming packet and the queue management mechanism
needed to temporarily store each packet.

A simple mechanism to handle the available memory and
queues has been created in accordance to the processing
power of the microcontroller, by reducing the complexity of
the involved algorithm and the amount of memory needed to
control the queues.

OBJECTS AND ADVANTAGES

Accordingly, several objects and advantages of the
present invention are: a) To provide a memory management
method capable of handling multiple queues needed to
accomplish a process of receiving input information to
generate an output result.

b) To provide the concurrent handling of logical queues
sharing the same physical banked memory.

¢) To provide an efficient mechanism to handle each
logical memory queue, suitable to a low processing power
8-bit microcontroller.

Other objects and advantages of this invention will
become apparent from a consideration of the ensuing
description and drawings.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows the elements from an 8-bit microcontroller
involved in this invention.

US 6,654,861 B2

3

FIG. 2a shows an example of two logical queues sharing
the same physical banked RAM.

FIG. 2b shows an example of one logical queue using a
banked RAM.

FIG. 3a shows an example of one logical queue using the
mechanism provided in this invention.

FIG. 3b shows an example of two logical queues using the
mechanism provided in this invention.

FIG. 4 shows the flowchart of the receiving function
designed for this invention.

FIG. 5 shows the flowchart of the processing function
designed for this invention.

FIG. 6 shows the flowchart of the buffer freeing function
designed for this invention.

LIST OF REFERENCE NUMERALS IN
DRAWINGS

110 8-bit microcontroller

112 Process or algorithm executing in an 8-bit microcon-
troller

114 Banked RAM available for the process

1121164, 1160 Communication interfaces between the
microcontroller 110 and external microprocessors.

210, 212, 214, 216 Memory buffers number 0, 1, 2 and 3
respectively 218a, 218b Memory buffer queues

310 Variables related to the general memory management

3124, 312b Variables related to queue management

3144, 314b Variables related to logical queue continuity

410, 510, 610 Flowchart start blocks

412,418, 426,512, 5164, 516b, 516¢, 520a, 520b, 520c¢, 614
Flowchart decision blocks

416, 420, 422, 424, 430, 5184, 518b, 518c, 522a, 522b,
522¢, 612, 616, 618 Flowchart process blocks.

414, 428, 514, 628 Flowchart end blocks

DETAILED DESCRIPTION

Now, the present invention will be described by referring
to the accompanying drawings that illustrate preferred
embodiments of the invention.

A banked memory available in an 8-BMC, like the one
shown on FIG. 1, must support two different queues con-
tained in the same available banked RAM (114).

This invention proposes the use of memory banks as
individual positions available to any of the two needed
queues. In this embodiment, each bank is itself a complete
memory buffer and a memory buffer denotes a queue posi-
tion.

A free memory buffer is not associated with any of the
queues. When a new packet arrives from any of the shown
interfaces (116a, 116b), the next available free buffer is
assigned to the queue related to that interface. This promotes
a dynamic buffer assignment dependent of the traffic gen-
erated in one direction or another.

The size of each memory buffer is predefined based on the
maximum size of packet expected from any of the interfaces.
This invention deals with low processing power 8-BMC
where the amount of programming code is one of the most
critical issues. By fixing the size of a memory buffer, process
112 doesn’t waste extra computational time obtaining the
beginning and end of a packet. Only a program routine
considering a predefined size of buffer and knowing the first
buffer in the queue may involve less processing time to
obtain a result than dynamic buffer size assignment.

Each buffer can be part of any queue, even when all
buffers are part of the same RAM. FIG. 2a shows a hypo-

10

15

20

25

30

35

40

45

50

55

60

65

4

thetical RAM 114 with four contiguous memory banks (210,
212, 214, 216). Physically, buffers are sequentially ordered,
buffer 210 being number 0 and buffer 216 being number 3.
However, there are two logical queues, one for each infor-
mation flow direction. Queue 218a begins with buffer 210
and finishes with buffer 214, while queue 218b begins at
buffer 212 and finishes at buffer 216. Summarizing, queue
218a uses buffers 0 and 2 and queue 218b uses buffers 1 and
3.

Another situation is depicted in FIG. 2b. In this case,
queue 218a occupies three buffers beginning at buffer 214,
continuing at buffer 216 and finishing at buffer 210. Queue
218a grows upwards through RAM with buffers 2 and 3 and
goes back to buffer O at the end. Queue 218b is not being
used in this case. Buffer 212 is free at this moment, so it is
available either for queue 218a or queue 218b as needed.

In order to establish each logic queue, three groups of
variables have been created. FIG. 3a shows the RAM 114
with three used buffers by the queue 218a. The other queue
218b is not shown to explain a first simple case.

The first group of variables 310 is referred to global
management of buffers. The Available Buffers Flags (ABF)
is divided in bits and indicates the state of each buffer. The
less significant bit (bit 0) represents buffer 0. In this case, the
bit 3 represents the last existing buffer (number 3) and the
four most significant bits are unused. It must be noted that
each memory register contains 8 bits, so a new memory
register must be added for each group of eight buffers added,
that is to say, to handle a number of buffers that is a multiple
of eight there must be a number of ABF registers equal to
that number. For example, to handle the cases of 8, 16 or 24
buffers, there must exist 1, 2 and 3 ABF registers, respec-
tively.

When a flag in the ABF is set to 1, the corresponding
buffer is considered free. When the flag is set to 0, the buffer
is considered occupied by any of the queues. The Next
Available Buffer (NAB) contains the number of the next free
buffer in the RAM 114. If all the buffers are in use (all ABF
are set to 0), this variable is ignored until a buffer becomes
available. In the example shown on FIG. 3, there are three
buffers occupied by queue 218a. The ABF are then [1 0 0 0]
since buffer number 3 (216) is free. The NAB is valid (there
is a free buffer) and contains the number 3, indicating the
third buffer is not in use.

The second group of variables 3124 is related specifically
to the queue. The Queue Counter (QCTR) indicates the
number of buffers in the queue. The First Queue Position
(FQP) and Last Queue Position (LQP) contain the first and
last buffers in the queue. In this example, the QCTR must be
3 since there are three buffers used by queue 2184, the FQP
is 0 since buffer number 0 (210) was the first and the LQP
is 2 indicating the buffer 2 occupies the last position in the
queue.

Using the QCTR, process 112 may know if there are more
buffers waiting in queue 218a, being the FQP the first buffer
waiting to be read. The LQP makes the existence of a logic
queue possible; each new buffer added to the queue can
know, through this value, which is the previous buffer.

The third group of variables (3144) are pointers contained
in each buffer. The Next Queue Position (NQP) points to the
next buffer in the queue. In this case, buffer 0 (210) points
to buffer 1 (212) and this last points to buffer 2 (214). This
is the LQP and its NQP is not valid. When the FQP is not
needed anymore (it already has been processed), the NQP
indicates which buffer will occupy the first position in the
queue (FQP).

US 6,654,861 B2

5

A more complex context is shown in FIG. 3b, with the
inclusion of the second queue 218b. This time all the buffers
are in use, so the ABF are set to [0 0 0 0] and the value in
NAB is ignored, since there are no free buffers.

Queue 2184 occupies buffers number 0 and 2 (210, 214).
Thus the QCTR is 2, the queue begins at a FQP=0 and ends
in a LQP=2 (3124). Queue 218b occupies buffers number 1
and 3 (212, 216), so the QCTR is also 2 (two used buffers)
but the FQP=1 and the LQP=3 (312b), since this queue
begins at buffer 1 and finishes at buffer 3.

Finally, buffer 0 (210), being the first position in queue
218a, points with its NQP to the next position, buffer 2
(214). Buffer 2 (214) has the last position and its NQP is
ignored (314aq).

In the other hand, buffer 1 (212) has the first position for
queue 2185 and its NQP points to the next buffer, i.e., buffer
3 (216). Again, buffer 3 is the last queue element and its
NQP is not valid (314b).

The interaction between the three kinds of variables (310,
312, 314) allows the handling of logical queues indepen-
dently of the physical RAM distribution. Based on the
example shown on FIG. 3b, an extension can be made to
support more than two queues. In fact, an unlimited number
of queues sharing the same RAM can be defined, each one
with its own set of queue variables (312). Such number is
limited by the amount of available memory buffers and the
extra memory needed by each queue variable set.

Process 112 controls information flow, executing three
basic functions. First, information packets coming from any
interface (116a or 116b) must be received and queued by
storing them in a free memory buffer. Second, the first
packet in each queue is processed to send the final result to
the corresponding interface (116a to 116 and vice versa).
Third, the buffer is freed since it’s not needed anymore.

The flowchart describing each step is shown on FIGS. 4,
5 and 6. The operation is explained next.

OPERATION OF INVENTION In order to receive an
incoming packet from an interface, a receiving function can
be explained with the flow chart shown on FIG. 4. The
function begins with a transmit request or the arrival of the
first byte of information (410). The ABFs are checked to
make sure there is at least one free buffer (412). If the ABFs
are all set to O, the function aborts the operation since all
memory buffers are occupied (414). If there is at least one
free buffer, the NAB will contain its physical position. The
buffer pointed in the NAB is used as the active buffer, being
the active buffer the one used by the function to receive the
packet. The flag related to the active buffer is set to O in the
ABEF, indicating the buffer is not free anymore. At this point
the first byte of information is stored in the active buffer
(416). In an 8-BMC, the use of hardware-implemented
communication ports simplifies the reception of each addi-
tional byte, since the microcontroller itself generates an
interrupt indicating the arrival of a new byte.

The QCTR is matched with 0 (418). If it’s true, there are
no elements in the queue and the active buffer (its position
is stored in NAB) will occupy the first position in the queue;
thus the value in NAB is stored in the FQP (420). If the
QCTR is greater than 0, it means there is at least one buffer
in the queue and the position of its last buffer is stored in the
LQP. The buffer indicated in the LQP is located and the
value of the NAB is stored in its NQP (422). With this
procedure, the buffer that is the last element in the queue
LQP will contain a pointer NQP to the active buffer, indi-
cated by NAB.

A new element has been added to the queue, so the QCTR
is increased in one unit and the new LQP takes the value of
the active buffer (424).

10

15

20

25

30

35

40

45

50

55

60

65

6

The queue has already been updated, only the assignation
of a new NAB remains to be done. To do that, the ABF is
matched to 0 (426). If it’s true, there are no more free buffers
and the function ends (428). Otherwise, there are free
available buffers and the new NAB will be selected by
testing each flag contained in the ABFs, beginning from the
flag representing the active buffer, going up and rolling back
to the least significant bit when the last flag is reached. When
a flag set to 1 is found, the NAB will be assigned to the free
buffer represented by that flag. By testing the flags from the
active buffer and up, the use of each buffer in a given
moment will be guaranteed, since the NAB position assig-
nation will follow an increasing and circular pattern. The
buffers usage will be uniform, extending the useful life of
the RAM. Furthermore, the circular mechanism minimizes
the number of retries in the flag testing, since the position
next to the active buffer is always the oldest used buffer and
very likely will be free.

The next step after occupying a buffer is to apply the
process. FIG. 5 shows a flowchart representing the process-
ing function. The function starts (510) and begins by polling
the ABF (512). If all the flags are set to one, all the buffers
are freed and the function ends (514). If that is not the case,
the QCTR defined for each type of queue is checked. In the
flowchart the different queues are named QCTR0O, QCTR1
and QCTRn (5164, 516b, 516¢), with the latter indicating an
unlimited number of queues. If the QCTR value is not 0, the
FQP of that queue is located (5184, 518b, 518¢) and checked
to make sure all the bytes have been received (520a, 5200,
520c¢). If the reception of all bytes of the packet has not
finished, the next existing QCTR is checked (5204, 520b). If
there are no more defined QCTR, the function ends (520c¢).

If the entire information has arrived, the buffer goes
through the process (522a, 522b, 522¢) and the result is sent
to the corresponding interface. Then, the next QCTR (5224,
522b) corresponding to other(s) queue(s) is checked to
execute the same steps or the function ends if it is the last
queue (522c¢).

The third and final step, shown on FIG. 6, is executed
when the result has been entirely sent through the corre-
sponding interface. The buffer freeing function is called
(610) with the parameter QCTR to know which queue is
involved. The QCTR is decreased in one unit, reducing
(612) the queue length. The ABF are then matched with 0
(614). If it’s true, it means there were no available buffers
before and this is the first being released, so the value of the
FQP (this variable contains the buffer being released) is
stored in the NAB (616). Then the FQP is reassigned with
the value contained in the buffer’s NQP, placing the next
element in the queue as the first position (618). Finally the
function ends successfully and the main program execution
continues.

Conclusion, Ramifications and Scope of Invention

Thus, the reader will see that the queue management
mechanism proves to be at once efficient and simple. It is
efficient because it allows the existence of multiple logical
queues into the same banked RAM with a dynamic buffer
assignment according to the queue demand. It is simple
because it uses straight forward algorithms and a small
amount of memory to control the queues. These character-
istics make the invention suitable for its implementation in
a low processing power 8-bit microcontroller.

While our above description contains many specificities,
these should not be construed as limitations to the scope of
the invention, but rather as an exemplification of one pre-
ferred embodiment thereof. Obviously, modifications and

US 6,654,861 B2

7

alterations will occur to others upon a reading and under-
standing of this specification such as, for example, different
size for the variables used to control each queue, or a
different flag method used to maintain the record of free and
used buffers. Each memory buffer could also have a variable
size, in expense of a more complex memory allocation
mechanism.

The description above is intended, however, to include all
such modifications and alterations insofar as they come
within the scope of the appended claims or the equivalents
thereof.

What is claimed is:

1. A method for handling multiple logical communication
queues sharing one physical memory space comprising the
steps of:

using a plurality of memory banks with each memory

bank serving as a memory buffer;

using the memory buffer to denote a queue position;

defining a size of the memory buffer based on the maxi-

mum size of any expected data packet;

using bits of a plurality of available buffers flags to

indicant which memory buffers are being used where
each of the plurality of available buffers flag is one byte
long and can flag the availability of four memory
buffers;

using a next available buffer field to indicate the next

buffer that is free;

loading a queue to a plurality of memory banks;

using a queue counter to indicate the number of buffers in

the queue;

using a first queue position value that contains the first

memory buffer used by the queue;

using a last queue position value that contains the last

memory buffer used by the queue; and,

using a next queue position value that points to the next

memory buffer in the queue.

2. The method of claim 1, wherein it is used with a low
processing power 8-bit microcontroller.

3. The method of claim 1, wherein it is used with FIFO
processing.

4. The method of claim 1, wherein the additional steps are
used comprising:

receiving a packet of data from an interface;

checking the available buffer field to see if there is an

available memory buffer;

aborting the request if there is no free memory buffer;

using the next available buffer pointers to find the next

available memory buffer if a memory buffer is free;
loading the data packet to the memory buffer given in the
next available buffer;

setting the available buffer flag to not free for a loaded

memory buffer;

checking a queue counter field to see the number of

memory buffers to be used;

setting the first queue buffer to a first queue loaded;

setting the last queue buffer and check for the next

available buffer if the queue counter field shows more
than one memory buffer;
checking to make sure that all of the queue has been
received, if not repeat the previous steps until all of the
queue has been received into the memory buffers; and

resetting the queue counter, the availability block flags
and the next available blocks after the queue has been
processed.

10

15

20

25

30

35

40

45

50

55

60

65

8

5. A device for handling multiple logical communication
queues sharing one physical memory space comprising:

a plurality of memory banks with each memory bank
serving as a memory buffer;

a memory buffer means used to denote a queue position
with the memory buffer size based on the maximum
size of any expected packet;

a plurality of available buffers flags to indicate with
memory buffers are being used where each of the
plurality of available buffers flag is one byte long and
can flag the availability of four memory blocks;

a next available buffer field to indicate the next buffer that
is free;

a loading means to load a queue to a plurality of memory
banks;

a queue counter to indicate the number of buffers in the
queue;

a first queue position value that contains the first memory
buffer used by the queue;

a last queue position value that contains the last memory

buffer used by the queue; and

a next queue position value that points to the next memory

buffer in the queue.

6. The device as in claim 5, wherein it has a low
processing power 8-bit microcontroller.

7. The device as in claim 5, wherein it uses FIFO
processing.

8. A computer program product for handling multiple
logical communication queues sharing one physical memory
space comprising a computer usable medium having com-
puter readable program code thereon, including:

program code for using a plurality of memory banks with

each memory bank serving as a memory buffer;

program code for using the memory buffer to denote a

queue position;
program code for defining a size of the memory buffer
based on the maximum size of any expected packet;

program code for using bits of a plurality of available
buffers flags to indicant which memory buffers are
being used where each of the plurality of available
buffers flag is one byte long and can flag the availability
of four memory buffers;

program code for using a next available buffer field to

indicate the next buffer that is free;

program code for loading a queue to a plurality of

memory banks;

program code for using a queue counter to indicate the

number of buffers in the queue;

program code using a first queue position value that

contains the first memory buffer used by the queue;
program code using a last queue position value that
contains the last memory buffer used by the queue; and,
program code using a next queue position value that
points to the next memory buffer in the queue.

9. The computer program product of claim 8, wherein it
is used with a low processing power 8-bit microcontroller.

10. The computer program product of claim 8, wherein it
is used with FIFO processing.

11. The computer program product of claim 8, wherein the
base component has interfaces and the program code for:

checking the available buffer field to see if there is an

available memory buffer;

US 6,654,861 B2

9

aborting the request if there is no free memory buffer;

using the next available buffer pointers to find the next
available memory buffer if a memory buffer is free;

loading the packet to the memory buffer given in the next
available buffer;

setting the available buffer flag to not free for a loaded
memory buffer;

checking a queue counter field to see the number of
memory buffers to be used;

setting the first queue buffer to a first queue loaded;

10

10

setting the last queue buffer and check for the next
available buffer if the queue counter field shows more
than one memory buffer;

checking to make sure that all of the queue has been
received, if not repeat the previous steps until all of the
queue has been received into the memory buffers; and

resetting the queue counter, the availability block flags
and the next available blocks after the queue has been
processed.

