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1
SMART INTERNETWORKING OPERATING
SYSTEM FOR LOW COMPUTATIONAL
POWER MICROPROCESSORS

BACKGROUND OF INVENTION

1. Field of Invention

The present invention relates to the field of operating
systems, specifically to multitasking operating systems
embedded into low processing power microprocessors.

2. Prior Art

The need for tools that facilitate programming of micro-
processors has motivated the development of several oper-
ating systems that, in general, accomplish the goal of
decoupling program development from details specific to the
management of microprocessor hardware. Existing operat-
ing systems have rapidly evolved from simple systems with
little stability and resource management capability into
complex and efficient systems capable of managing several
simultaneous tasks and administrating a vast number of
resources. Today, it is almost impossible to imagine the
existence of a personal computer (PC) that executes appli-
cations without the help of an underlying operating system.

In addition, parallel to the evolution of PC operating
systems, low-level architectures have also evolved in a way
to allow the existence of low cost processors with processing
speeds over 30 MHz, handling several Kbytes of RAM and
ROM memory, etc., all in a very small packaging. These
small processors, also called microprocessors, sometimes
even include embedded peripheral devices within the casing
of the microprocessor, making them ideal to solve
automation, control, basic signal processing and other appli-
cation at a very low cost.

Yet, despite the great advances in microprocessor
technology, there has not been a similar evolution in the
development of software for these devices. It is true that
there exist numerous programming tools, such as assembler
language compilers, high-level language compilers with
assembler output, microprocessor native language develop-
ment environments and others. However, there is a growing
need for a tool that facilitates rapid and efficient application
development.

The use of an embedded operating system may accelerate
application development by dividing the microprocessor’s
operation management into specific function calls that lead
to the accomplishment of these delicate tasks.

A common source of programming errors resides in the
handling of microprocessor bits and registers. In operating
system-based programming, the need for low-level handling
is eliminated, since the operating system is now responsible
of those tasks. Application development time is thus
reduced.

Further, in some situations it is desirable that two or more
tasks be executed concurrently, whether to be able to asyn-
chronously handle several external events or other reasons.
This requires the use of a computational resource that may
allow a CPU to be shared among many tasks. Through
programming based on a multitasking operating system
(0S), executing multiple concurrent tasks would be as easy
as developing each specific task and telling the OS to handle
their execution. The idea of a multitasking operating system
is not at all easy to realize, and no existing multitasking
operating system supports the use of low processing power
microprocessors comprising a basic architecture.

SUMMARY OF INVENTION

This invention presents the definition of the architecture
for a multitasking operating system capable of executing on
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the majority of 8-bit microprocessors as well as in any
microprocessor of higher processing power. Such operating
system, called Smart Internetworking Operating System
(SIOS), has been designed to manage. microprocessor
resources, such as RAM/ROM memory, input/output ports,
peripherals, and others. In addition, it is capable of handling
the multiple tasks within a single central processing unit
(CPU).

The definition exposed in this disclosure is based on the
basic structures of the SIOS architecture, such as memory
distribution, basis SIOS execution algorithms and the basic
function prototypes that SIOS supports.

OBJECTS AND ADVANTAGES OF INVENTION

The following are several objects of the present invention

To described a valid architecture that facilitates the imple-
mentation of a Smart Internetworking Operating System
(SIOS);

To provide a definition of the basic algorithms of the
operation of SIOS;

To illustrate and provide conceptual bases, through
examples, to allow the creation of new functions that SIOS
may execute;

To provide an operating system that may be executed by
low processing power and capacity miCroprocessors;

To provide a software platform that permits the easy
portability of application program code among several
microprocessor architectures, in which each microprocessor
possesses a version of SIOS adapted to its architecture;

To provide a software platform that allows rapid devel-
opment of microprocessor applications;

To provide a platform that allows the implementation of
applications comprising multiple concurrent threads of
execution in a single microprocessor.

The following are several advantages of the present
invention:

SIOS is an operating system that supports low processing
POWEr MiCroprocessors;

SIOS provides a software development platform for
microprocessors in which program code may be ported
among different microprocessors architectures;

SIOS makes it possible to implement multi-threaded
applications in low processing power microprocessors;

SIOS supports the implementation of almost any appli-
cation in a microprocessor with minimized development
time, in which the limits of applications may be imposed by
the intrinsic limitations of the underlying microprocessor
resources (e.g., speed), and not be development time and
difficulty of programming;

SIOS allows the development of applications in which
associated tasks may operate independently of each other,
while sharing the same execution time and hardware
resources, such as memory, etc.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 Data Memory—Task Control Block TCB: A block
used to control the execution of each task, called Task
Control Block (TCB). Every task comprises one such block,
and all TCBs are arranged in a dynamic chain of TCBs.

FIG. 2 Data Memory—Task Information Block TIB: Task
Information Blocks (TIBs) used to control events associated
with a task. Every task comprises one such block, and all
RIBs are arranged in a dynamic chain of TIBs.
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FIG. 3 Data Memory—Event Control Block ECB: ECBs
control the events a system must monitor. Every event
comprises one such block. All ECBs are arranged in a
dynamic ECB chain.

FIG. 4 Data Memory—Pipe Control Block PCB: PCBs
control a task’s communication Pipes. Each Pipe comprises
one such block. All PCBs are arranged in a dynamic chain.

FIG. 5 Data Memory—Data Memory Control Block
DMCB: DMCBs help manage the memory assigned to a
task, and are arranged in a chain of DMCBs.

FIG. 6 Data Memory—Task Data Memory TDM: TDM
blocks are data memory blocks associated with each task. A
task’s TDM stores its context on one TDM block before
yielding CPU handling to the Kernel.

FIG. 7 Data Memory—Port Information Block: PIBs are
special memory blocks used to handle a microprocessor’s
input and output ports.

FIG. 8 Data Memory—XKernel Control Registers: KCRs
are registers used by the Kernel to store required operation
data.

FIG. 9 Program Memory—Task Allocation Table: TATs
are tables of pointers that accurately identify the beginning
of the memory blocks associated with a task.

FIG. 10 Program Memory—Task Header: A task’s pro-
gram code section starts with a Task Header (TH), which
provides basic information about the task.

FIG. 11 Kernel Dispatcher General Flow Chart: The
general algorithm of the Dispatcher is described later, with
the figures that illustrate every stage in the general algo-
rithm.

FIG. 12 Kernel Port State Update: This control block is
the first step of four that the Dispatcher executes before
yielding control to the active task. This subprocess carries
out reading and verification of a microprocessor’s input
ports to set up port events, which can be signaled when the
state of an input port changes.

FIG. 13 Kernel Task State Update: This control block is
the second step that the Dispatcher executes before yielding
control to the active task. This subprocess carries out reading
and verification of events to update the state of tasks on the
WAIT state and switch them to the READY state if their
expected event is signaled.

FIG. 14 Kernel Priority Task Ordering: This control block
is the third step of four that the Dispatcher executes before
yielding control to the active task. This subprocess selects
the task in the READY state that is to be switched to the
ACTIVE state.

FIG. 15 Kernel Context and Control Restore: This control
block is the last step that the Dispatcher executes before
yielding control to the active task. This subprocess executes
the restoration of all context variables associated with the
active task, and yields CPU control to the Parser, which
continues the execution of the active task’s instructions.

DETAILED DESCRIPTION

DETAILED DESCRIPTION OF DRAWINGS FIG. 1
Data Memory—Task Control Block TCB: This Data
Memory block, called TCB, is used in the execution of each
task. Every task comprises one such block. All TCBs are
arranged in a chain of TCBs, and contain the following
fields:-Task_ID: Task Identifier, contains the identifier of
the task who owns a TCB. This field is initialized when a
task is installed into the Kernel’s line of execution, and is
never modified.

Status/Priority: Contains the task’s state and priority
information. Bit<7..6> correspond to the state. Bit <5..0>
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correspond to the priority. A task’s priority is fixed and is
obtained from the Task Header when the task is installed on
the Kernel’s line of execution. The state may be one of the
following: 00 for ACTIVE, 01 for WAITING, 10 for
READY, or 11 for SUSPEND.

Task_ Next_IP: Task Next Instruction Pointer is a set of
three bytes that store the pointer to Program Memory where
the next SIOS instruction associated with the task that owns
the TCB resides. Bytes are assigned in the order of High,
Medium and Low, where Low byte is the least significant
byte, and High byte is the most significant. This pointer is
updated every time a task yields CPU control to the Kernel.

Task Start IP: Task Start Instruction Pointer is a set of
three bytes that contain the pointer to Program Memory
where the first SIOS instruction associated with the task that
owns the TCB resides. Bytes are assigned in the order of
High, Medium and Low, where Low byte is the least
significant byte, and High byte is the most significant. This
pointer is installed in the Kernel’s line of execution with the
value indicated by the Task Header, and is never modified.

Ready Wait Time: Task waiting time in Ready State,
byte that contains the counter of how many times a READY
task has lost the priority competition. This value is updated
by the Kernel.

Event_ID: Event Identifier contains the event identifier
for which a task is waiting to switch from the WAIT to the
READY state. This value is updated when the task wishes to
wait for an event.

Event_ Control: Event Control byte contains the event
control value that an event must display so that it is assumed
as active and a task may continue operation. This value is
updated when a task starts its wait for an event.

Next_ TCB: Next Task Control Block Pointer is a set of
two bytes that contain the pointer to Data Memory of the
next TCB in the chain of TCBs. If NULL, it means that there
are not other TCBs on the chain. Byte order is big-endian
(i.e., the first byte is the most significant byte, and the last is
the least significant byte). This value is updated by the
Kernel when the current TCB is the last on the chain and a
new TCB is created.

FIG. 2 Data Memory—Task Information Block TIB: A
TIB is used to control the events associated with a task.
Every task comprises one such block. A TIB comprises the
following fields:-Task ID: Task Identifier contains the iden-
tifier corresponding to the task that owns a TIB. This field is
initialized when the TIB is created, when the task is installed
in the Kernel’s line of execution, and is never modified.

Pipe,;ID: Pipe Identifier contains a pointer to the Pipe
that a task uses for communication purposes. If NULL, it
means that task has not been assigned a Pipe. This field is
initialized when a task requests that a Pipe be assigned to it.

Mutex_ ID: Mutual Exclusion Identifier contains the
identifier of the mutually exclusive event (Mutex) that a task
owns. If NULL, no mutex has been assigned to the task. This
field is initialized when a task requests that a mutex be
assigned to it.

Next_ TIB: Next Task Information Block Pointer is a set
of two bytes that contain a data memory pointer to the next
TIB in the TIB chain. If NULL, it means no next TIB exists
in the TIB chain. Byte order is big-endian. This value is
updated by the Kernel when the current TIB is the last on the
TIB chain and a new TIB is created.

FIG. 3 Data Memory—Event Control Block ECB: This
block is used for control of events that the system is to
monitor. Each event comprises on such block. An ECB
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d
consists of the following fields: Event ID: Event Identifier
contains the identifier of the event being expected by a task
so that it can switch from the WAIT to the READY task
state. This field is initialized when an event is created and is
never modified.

Control/Status: An event’s Control & status contains
information about the event, whether the event is signaled or
not, and other event data. This field is updated by the task
that controls the event. The Kernel watches this field to
decide whether an event has been signaled by comparing it
with the event’s control byte Event_Control within the
TCB.

Next ECB: Next Event Control Block Pointer is a set of
two bytes that contain the data memory pointer to the next
ECB in the ECB chain. If NULL, it means there is no next
ECB in the chain. Byte order is big-endian. This value is
updated by the Kernel when the current ECB is the last on
the ECB chain and a new ECB is created.

FIG. 4 Data Memory—Pipe Control Block PCB: The
PCB is used for Pipe control, and there is one PCB for each
existing Pipe on the PCB chain. The PCB contains the
following fields: Pipe_ ID: Pipe Identifier contains the iden-
tifier of the Pipe created on memory. This field is initialized
when the Pipe is created and is never modified.

Pipe_ Base_Address: Pipe Data Memory Base Address is
a data memory pointer to the first byte on the Pipe. This field
is initialized when the Pipe is created and is never modified.
Byte order is big-endian.

Pipe Size: Pipe Size in bytes, contains the number of
data memory bytes that a Pipe occupies. This field is
initialized when the Pipe is created and is never modified.

Next PCB: Next Pipe Control Block Pointer is a set of
two bytes that contain a data memory pointer to the next
PCB in the chain of PCBs. If NULL, it means there is no
next PCB on the chain. Byte order is big-endian. This value
is updated by the Kernel when the current PCB is the last on
the PCB chain and a new PCB is created.

FIG. 5 Data Memory—Data Memory Control Block
DMCB: A DMCB is used to manage the memory assigned
to each task. DMCBs are arranged in a chain of DMCBs, in
which each DMCB contains the following fields: Task_ID:
Task Identifier contains the identifier of the task that owns
the DMCB. This field is initialized when the block is
created, when the task is installed on the Kernel’s line of
execution, and is never modified.

Data_ Memory_ Base_ Address: Task Data Memory
Base Address is a data memory pointer to the first byte in the
memory block assigned to a task. These bytes are initialized
when Task Memory Data is assigned and are never modified.
Byte order is big-endian.

Data_ Memory_ Size: Task Data Memory Size in bytes,
contains the number of data memory bytes that the assigned
memory block takes up. This field is initialized when the
block is created and is never modified.

Next  DMCB: Next Task Data Memory Control Block
Pointer is a set of two bytes that contains a data memory
pointer to the next DMCB in the DMCB chain. If NULL, it
means no next DMCB exists. Byte order is big-endian. This
value is updated by the kernel when the current DMCB is the
last DMCB on the DMCB chain and a new DMCB is
created.

FIG. 6 Data Memory—Task Data Memory TDM: Every
task comprises a data memory block containing Task Data
Memory (TDM) to enable it to store the context registers
before yielding control to the Kernel, and the registers

10

15

20

25

30

35

40

45

50

55

60

65

6

required for regular operation. TDMs contain the following
fields:—Task ID: Task Identifier contains the identifier of
the task that owns this TDM. This field is initialized when
the block is created, when the task is installed on the
Kernel’s line of execution, and is never modified.

REGx: task context register. This may be a STATUS
register of the ALU, an INDIRECTION register, a bank
selection register, or other, and contains the value of the
REGx before yielding control to the Kernel. This value is
accordingly recovered from this location after control is
resumed. There are as many REGs as required by the system
for successful context change.

DATAR: task data registers. There are as many assigned
registers as the task requested when it was installed on the
Kernel’s line of execution.

FIG. 7 Data Memory—Port Information Block: PIBs are
special data memory blocks used for handling of micropro-
cessor input and output ports. They contain the following
fields: Assignation_ Port_Mask: Mask comprising a set of
bytes that contain bitwise information of microprocessor
inputs/outputs (I/Os) assigned to tasks. If the I/O bit is
HIGH, it means that the I/O has been assigned to a task. If
the bit is LOW, it is free to be assigned to a task. There are
as many bytes in the mask as there are data bytes provided
for I/Os by the microprocessor. Byte order is little-endian
(i.e., the first byte is the least significant whereas the last byte
is the most significant).

Input_ Selection_ Mask: Mask comprising a set of bytes
that contain bitwise information of the direction of commu-
nications in I/Os. If the bit is HIGH, the I/O is being used as
input and must be watched to verify that it generates a port
event. Otherwise, it is being used as output and does not
have to be watched. There are as many bytes in the mask as
there are data bytes provided for I/Os by the microprocessor.
Byte order is little-endian.

Idle_ State_ Mask: Mask comprising a set of bytes that
contain bitwise information about the natural state of micro-
processor I/O bits. If a bit is HIGH, it means that a current
LOW value must generate the port event. If a bit is LOW, it
means that a current HIGH value must generate the port
event. There are as many bytes in the mask as there are data
bytes provided for I/Os by the microprocessor. Byte order is
little-endian.

Change State: contains a set of bytes that contain bitwise
information related to a change in the value of the micro-
processor’s 1/O bits. If the bit is HIGH, it means that a
change has occurred in such bit. If a bit is LOW, a change
in such bit has not occurred. There are as many bytes in the
mask as there are data bytes provided for I/Os by the
microprocessor. Byte order is little-endian.

FIG. 8 Data Memory—Kernel Control Registers: The
Kernel requires a set of information storage registers for
successful operation. This block of data memory contains
the following fields: DM_ Remainder: Free Data Memory
Remainder, contains the number of free bytes in data
memory. Every time a task is assigned a memory block, this
counter is decreased. Byte order is big-endian.

Max_ Priority: register that stores the maximum priority
assigned to a task used in the process of searching for the
READY task with highest priority.

Max_ Wait_ Time: register that stores the maximum wait
time associated with a task. This is used in the process of
searching for the READY task with the highest priority.

Task_ID_ Winner: Identifier of the READY task of high-
est priority.
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IP: Instruction Pointer, pointer to program memory that
contains the current instruction that is to be decoded by the
Parser. Byte order is big-endian.

DM__Pointer Memory Pointer. Byte order is big-endian.

TCB__Pointer: Task Control Block Pointer contains a data
memory pointer to the location of the current TCB. Byte
order is big-endian.

ECB_ Pointer: Event Control Block Pointer contains a
data memory pointer to the location of the current ECB.
Byte order is big-endian.

DMCB_ Pointer: Data Memory Control Block Pointer
contains a data memory pointer to the location of the current
DMCB. Byte order is big-endian.

TIB_ Pointer: Task Information Block Pointer contains a
data memory pointer to the current TIB. Byte order is
big-endian.

PCB_ Pointer: Pipe Control Block Pointer contains a data
memory pointer to the location of the current PCB. Byte
order is big-endian.

Last TCB_Pointer: Last Task Control Block Pointer
contains a data memory pointer to the location of the last
TCB in the TCB chain. Byte order is big-endian.

Last ECB_Pointer: Last Event Control Block Pointer
contains a data memory pointer to the location of the last
ECB in the ECB chain. Byte order is big-endain.

Last TIB Pointer: Last Task Information Block Pointer
contains a data memory pointer to the location of the last
TIB on the TIB chain. Byte order is big-endian.

Last_ PCB_ Pointer: Last Pipe Control Block Pointer
contains a data memory pointer to the location of the last
PCB on the PCB chain. Byte order is big-endian.

Last_ DMCB__ Pointer: Last Data Memory Control Block
Pointer contains a data memory pointer to the location of the
last DMCB in the DMCB chain. Byte order is big-endian.

FIG. 9 Program Memory—Task Allocation Table: A Task
Allocation Table is a set of pointers used to keep accurate
track of the beginning of each memory block associated with
a task’s program code. TATs are read by the system initial-
ization process. There are as many pointers in TATs as there
are tasks installed in Program Memory. Each entry on a TAT
consists of the following fields:-Tasks Condition: This is a
byte that indicates the initial operation condition associated
with the task to which this TAT entry points. The condition
may be SLEEP, to indicate that the task is not to be inserted
in the Kernel’s line of execution at system start time. Or it
may be WAKE, to indicate that the task must be installed on
the Kernel’s line of execution upon system startup.

Task_ Start_ IP: Task Start Instruction Pointer is a set of
three bytes that contain a program memory pointer to the
location of a task’s Task Header. Byte order is high, medium
and low, where HIGH is the most significant byte, and LOW
is the least significant byte.

FIG. 10 Program Memory—Task Header: A task’s pro-
gram code section starts with a Task Header (TH) that
provides the system with basic information about the task.
The following are the field contained in a Task
Header:-Task_ ID: Task Identifier contains the identifier of
the task that owns this TH.

Status/Priority: initially contains the task’s state informa-
tion and assigned priority. Bits<7..6> correspond to state,
and Bits<5..0> correspond to priority. State can be 11 for
SUSPEND, or 10 for READY.

Task_Data Memory_ Size: Task Data Memory Size in
bytes, contains the number of bytes that the assigned data
memory block occupies.
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Task Program Code: is the task’s program code that is to
be executed by the Kernel.

FIG. 11 Kernel Dispatcher General Flow Chart: This is
the general algorithm performed by the Dispatcher and is
described in detailed on the next figures.

FIG. 12 Kernel Port State Update: This control block is
the first step of four steps carried out by the Dispatcher
before yielding control to the active task. This subprocess
includes reading and verification of input ports to the
microprocessor, so that the appropriate event can be signaled
when a change is detected on the associated input ports.
Verification is done during every cycle in which the Dis-
patcher take control. This high frequency sensing enables
the OS to detect events in high speed ports, achieving the
best possible resolution.

The result is a mask of assignment and selection of input
ports, which details the ports that must be monitored and
those that need not be monitored. Ports that must be moni-
tored are those that have been assigned to tasks as input
ports. Ports that need not be monitored are those not
assigned to any tasks, or assigned to tasks as output ports. If
the input port events are active, they are reset.

Next, the resulting mask is examined. If it is all-zeros,
then no port verification is necessary as not bits are pro-
grammed to generate events. All microprocessor ports are
checked, and the result is masked with the mask resulting of
block A to obtain the real value of the bits that are to be
watched.

Finally, bit changes are detected by checking the current
state mask with the mask corresponding to the natural state
of bits. If a change occurred, the associated bit will be
HIGH, otherwise it will be LOW. If the resulting mask is
all-zeros, no changes occurred. Otherwise, it means that
there were changes in the input ports. Accordingly, the event
of Port_Change_ Event is signaled.

FIG. 13 Kernel Task Stat Update: This control block is the
second step that the Dispatcher must carry out before
yielding control to the active task. This subprocess includes
reading and verification of events, so that tasks in the WAIT
state can be switched to the READY state if their expected
events have occurred.

First, the pointer to the beginning of the TCB chain is
retrieved. All TCBs in the TCB chain must be examined to
acknowledge the state associated with every task. If a task
is in the SUSPEND state, its state is not modified in this
subprocess. The pointer to the next link in the TCB chain is
obtained. If NULL, it means the entire TCB chain has been
traversed.

Otherwise, the current task’s state is checked. If READY,
this means that the current task is not expecting any events.
Its state is not modified. If WAIT, its associated event must
be examined. Accordingly, the pointer to the beginning of
the ECB chain is retrieved. All ECBs must be examined until
the expected event is found. If the current ECB corresponds
to the expected event, its state is examined. If it is signaled
(activated), the state of the task in WAIT state must be
updated to the READY state. If it is not signaled, the task’s
state is not modified.

If the end of the ECB chain is reached without finding the
associated event, the system error flag is raised, indicating
that a task is waiting for a non-existent event.

FIG. 14 Kernel Priority Task Ordering: This control block
is the third step of four steps that the Dispatched carries out
before yielding control to the active task. This subprocess
selects the READY task that is to be switched to the
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ACTIVE state and given control of the system. The criteria
used for task selection are task priority and the amount of
time in which a task has been in the READY state.

First, the pointer to the beginning of the TCB chain is
retrieved. The entire TCB chain must be traversed to exam-
ine all tasks that are in the READY state. The Max_ Priority,
Max_ Wait Time and Task ID Winner variables are ini-
tialized. These variables will contain the information of the
task that wins the competition.

All tasks states are checked sequentially. If a task is not
READY, the next task in the chain is checked. Once a
READY task is found, its priority is checked against Max__
Priority. If the found task’s priority is higher, its associated
information is stored in Max_ Priority, Max_ Wait_ Time
and Task_ID_ Winner. Such task is considered the winner,
thus far.

If the priority of the examined task is equal to Max__
Priority, its time on the WAIT state is compared to Max__
Wait_ Time. If the current task’s time on the WAIT state is
higher, the values of Max Wait Time and Task ID__
Winner are updated to reflect the newly found winning task.

These steps are repeated until the last link in the TCB
chain is found (i.e., when the TCB pointer equals NULL).
The winning task is the one that is registered in the Task
ID_ Winner register.

FIG. 15 Kernel Context and Control Restore: This control
block is the last step of four that the Dispatcher must execute
before yielding control to the active task. This subprocess
restores the winning task’s context variables and grants CPU
control to the Parser. The Parser will resume execution of the
active task’s instructions.

First, the value of Task__ID_ Winner is checked. If Task__
ID_ Winner is NULL, there are no active tasks to be
executed. The Dispatcher thus maintains control.

If Tasks_ ID_ Winner is valid, a pointer to the start of the
TCB chain is retrieved. The winner task’s TCB must be
found by traversing the TCB chain. If the end of the TCB
chain is found (i.e., pointer equals NULL), the system error
flag is raised indicating that the winner task’s TCB does not
exist.

If a valid TCB is found, the Parser’s Instruction Pointer is
assigned with the location of the winner task’s next instruc-
tion to be executed. The task’s state is switched to ACTIVE.

The data memory pointer is assigned to point to the
beginning of the DMCB chain to search for the active task’s
DMCB by traversing the DMCB chain. Once the active
task’s DMCB is found, the data memory pointer is loaded
with the active task’s DMCB. (If NULL, it means that the
end of the DMCB chain was found and no valid DMCB was
found for the active task. Accordingly, the system error flag
is raised to indicate that the active task does not own a valid
DMCB.) Next, all context variables associated with the
active task are restored. The Parser now gains control and
starts executing the instructions beginning with the location
pointed at by IP.

OPERATION OF INVENTION

SIOS Basis Structure Data Memory Structure Data
Memory is organized in such a manner as to allow the
Kernel and all tasks to coexist and operate correctly. It
comprises two parts: a series of control block chains and a
series of data memory blocks.

SIOS Basic Structure Program Memory Structure Pro-
gram Memory is the memory that contains SIOS’s program
code. It comprises two sections: Task Allocation Table and
Task Program Code.
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SIOS Basic Structure Basic Functions: SIOS’s basic
functions are those that create actions required for the
existence of the operating system, for its operation and the
operation of tasks.

Basic functions are implemented in a language native to
the underlying microprocessor. The function prototypes, the
parameter it takes, and the values returned, are defined
independently of the platform, thus allowing that code
written for SIOS be easily ported to other platforms that use
SIOS as their operating system.

SIOS basic functions are described next:

SIOS__Add_ Task(TAT) This function adds a new task to
the Kernel’s execution process and assigns all data memory
resources needed to execute the new task.

Parameters:—TAT. Task_ Start_IP, pointer to actual task
to be added, in the System_ Pipe[0..PM__ POINTER _ SIZE-
1]Returns: (nothing)Actions:—Creates a TCBoVerifies if
there are TCB__SIZE bytes available in memory.

oTCB_ Pointer[0..DM__ POINTER _ SIZE-1]=requests
TCB__SIZE bytes of memory.

Initializes TCB with necessary values: oTCB.Task D=
Task IDoTCB.Stat Pro=TH.Stat PriooLast
TCB.Next_ TCB[0..DM__POINTER__SIZE-1]=TCB__
Pointer[0.. DM__POINTER _SIZE-1]oTCB.Next_ TCB
[0..DM_POINTER_SIZE-1]=NULLoLast_TCBJ[O..
DM_POINTER_SIZE-1]=TCB__Pointer[0..DM__
POINTER__SIZE-1]oTCB.Task_ Start_IP [0..PM__
POINTER__SIZE-1]=TAT[Task__ID].Task_ Start_IP
[0..PM__POINTER_SIZE-1] oTCB.Task Next IP
[0..PM_POINTER_SIZE-1]=TCB.Task_ Start_ IP
[0.PM__POINTER_SIZE- 1]JoTCB.Ready Wait Time=
00TCB.Event_ ID=NULL-Creates a DMCB and a
TDMo Verifies if there are DMCB__SIZE bytes available in
memory.

oVerifies if there are TH.TDM__Size bytes available in
memory.

oDMCB_ Pointer[0..DM__POINTER _SIZE-1]=
Requests DMCB__SIZE bytes of memory.

oDMCB.Data_ Memroy_ Base_ Address[0..DM__
POINTER _SIZE-1]=Requests TH.TDM_ Size bytes of
memory.

Initializes DMCB and TDMoDMCB.Task ID=Task__
IdoDMCB.Data_ Memroy_ Size=TH.TDM_ SizeoLast _
DMCB.Next_ DMCB[0..DM_POINTER__SIZE-1]=
DMCB_ Pointer[0.. DM__POINTER _SIZE-1JoLast
DMCB[0.DM__POINTER__SIZE-1]=DMCB__Pointer[0..
DM__POINTER__SIZE-1]oTDM.Task_ ID=Task_ ID-
Creates a TIBoVerifies that there are TIB_SIZE bytes
available in memory.

oTIB_ Pointer[0..DM__POINTER _ SIZE-1]=Requests
TIB__SIZE bytes of memory.

Initializes TIB with required values:oTIB.Task ID=
Task_IDoTIB.Mutex_ID=NULLoTIB.Pipe_ID=
NULLoLast_ TIB.Next_ TIB[0..DM__POINTER__SIZE-
1]=TIB_ Pointer [0.DM_POINTER_SIZE-1]JoLast_TIB
[0..DM_POINTER_SIZE-1]=TIB_ Pointer [O..
DM__POINTER__SIZE-1]

SIOS_ Suspend_ Task()This functions suspends the
execution of a task. All task control blocks remain valid, i.e.,
TCB, ECB, TIB, PIP, TDM.

Parameters: (non)Returns: (nothing)Actions:-Searches
for TCBoTCB_ Pointer=FIRST__TCB_ POINTERo Verity
that TCB.Task_ ID=Task_IDoif not, TCB_ Pointer=
TCB.Next_ TCBoRepeat search until appropriate TCB is
found.
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Updates TCBoTCB.Status=SUSPEND-Yields
controloTDM.Context Regs=Context RegsoGoto KER-
NEL

SIOS_ Wake_ Task(Task_ID) This function restores
execution of a suspended task.

Parameters:-Task_ID, in System_ Pipe[0]Returns:
(nothing)Actions:-Searches for TCBoTCB_ Pointer=
FIRST TCB_ POINTERoVerify that TCB.Task ID=
Task _IDolf not, TCB_ Pointer=TCB.Next TCBoRepeat
search until appropriate TCB is found.

Updates TCBoTCB.Status=READY-Yields controloGoto
KERNELSIOS_ Redispatch() This function yields CPU
control to the Kernel. It is called by the task that wishes to
yield control The task’s state is switched to READY.

Parameters: (non)Returns: (nothing)Actions:-Searches
for TCBoTCB_ Pointer=FIRST_TCB__ POINTERoCheck
that TCB.Task_ ID=Task_ IDolf not, TCB_ Pointer=
TCB.Next_TCBoRepeat search until appropriate TCB is
found.

Updates TCBoTCB.Status=READY-Yields
controloTDM.Context_ Regs=Context_ RegsoGoto KER-
NEL

SIOS_Wait _event(Event_ID, Event Control) This
functions switches a task into the WAIT state to wait for the
specified event.

Parameters:-Event_ID, in System_ Pipe[0]-Event
Control, in System_ Pipe[1]. the event is assumed active
when its value equals Event_ Control.

Returns:(nothing)Actions:-Searches for TCBoTCB__
Pointer=FIRST TCB_POINTERoCheck that TCB.Task
ID=Task_IDolf not, TCB_Pointer=TCB.Next__
TCBoRepeat search until appropriate TCB is found.

Updates TCBoTCB.Status=WAIToTCB.Event_ID=
Event_ IDoTCB.Event__Control=Event_ Control-Yields
controloTDM.Context_ Regs=Context_ RegsoGoto KER-
NEL

SIOS_ Create_ Mutex(Task__ID) This function creates a
Mutex in memory and updates the required variables.

Parameters:-Task__ID, the task that owns the mutex, in
System__ Pipe[0]Returns:- Mutex ID, in System_ Pipe[1]
Actions:-Checks that there are ECB__SIZE bytes available
in memory.

Creates an ECBoECB_ Pointer[0.DM_ POINTER
SIZE-1]=Requests ECB__SIZE bytes of memory.

Searches for a non-existing Mutex__ID to assign it to the
new mutex.

Initializes ECBoECB.Event ID=Mutex
IDoECB.Control__Stat=0OFFoLast_ ECB.Next_ ECB
[0.DM_POINTER_SIZE-1]=ECB_ Pointer[O0..
DM__POINTER__SIZE-1]JoLast_ ECB[0..DM__
POINTER _ SIZE-1]=ECB_ Pointer[0.. DM__POINTER _
SIZE-1]-Searches for TIB, using Task IDoTIB_ Pointer=
FIRST_TIB_POINTERoChecks that TIB.Task_ID=
Task IDolf not, TIB_ Pointer=TIB.Next TCBoRepeat
search until appropriate TIB is found.

Updates TIBoTIB.Mutex ID=Mutex_ID
SIOS_ Set_ Mutex(Mutex_ID) Updates the mutex’s
state.

Parameters:-Mutex_ID, in System_ Pipe[0]Returns:
(nothing)Actions:-Searches for ECBoECB_ Pointer=
FIRST_ECB_ POINTERoChecks that ECB.Event_ID=
Event_IDolf not, ECB_ Pointer=ECB.Next_ ECBoRepeat
search until appropriate ECB is found.
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Upates ECBoECB.Control _Status=ON

SIOS_ Clear_ Mutex(Mutex__ID) Updates the mutex’s
state.

Parameters:Mutex_ID, in System_ Pipe[0]Returns:
(nothing)Actions:-Searches for ECBoECB_ Pointer=
FIRST ECB_ POINTERoChecks that ECB.Event ID=
Event_IDolf not, ECB_ Pointer=ECB.Next_ECBoRepeat
search until appropriate ECB is found.

Updates ECBoECB.Control _Status=OFF

SIOS_ Create_ Pipe(Pipe_ Size) Creates a PCB in
memory, reserves memory space for the Pipe, and updates
the necessary pointers.

Parameters:-Pipe_ Size, in System_ Pipe[OJReturns:-
Pipe_ ID, in System__Pipe[ 1] Actions:-Checks that there are
PCB__SIZE bytes available in memory.

Checks that there are Pipe Size bytes available im
memory.

Creates a PCBoPCB_ Pointer[0.DM__ POINTER _ SIZE-
1]=Requests PCB__SIZE bytes of memory-Searches for a
non-existent Pipe_ ID-Initializes PCBoPCB.Pipe_Base__
Address[0..DM__POINTER_SIZE-1]=Requests Pipe__Size
bytes of memory.

oPCB.Pipe_ID=Pipe_IdoPCB.Pipe ;. ._p;p.
SizeoLast_ PCB.Next_ PCB[0.. DM__POINTER__SIZE-
1]=PCB__Pointer{0..DM__ POINTER_SIZE-1]oLast_ PCB
[0.. DM_ ponrer_SIZE-1]=PCB__Pointer[0..DM__
POINTER - 1]

SIOS_ Set_ Pipe_ Status(Pipe__ID, Pipe_ Status)
Updates a Pipe’s state indicator.

Parameters:-Pipe_ID, in System_ Pipe[0]-Pipe_ Status,
in System_ Pipe[1]Returns: (nothing)Actions:-Searches for
ECBoECB_ Pointer=FIRST__ECB_ POINTERoChecks
that ECB.Event ID=Pipe_IDolf not, ECB_ Pointer=
ECB.Next_ ECBoRepeat search until an appropriate ECB is
found.

Updates stateoECB.Event_ Control=Pipe_ Status

SIOS_Get_ Pipe_ Status(Pipe ID) Updates a Pipe’s
state indicator.

Parameters:-Pipe_ ID, in System_ Pipe[0]Returns:-
Pipe_ Status, in System_ Pipe[1] Actions:-Searches for
ECBoECB_ Pointer=FIRST__ECB_ POINTERoChecks
that ECB.Event ID=Pipe_IDolf not, ECB_ Pointer=
ECB.Next_ ECBoRepeat search until an appropriate ECB is
found.

Read stateoPipe_Status=ECB.Event__Control.

SIOS_Send_ Byte To_ Pipe(Pipe ID, Pipe Index,
Byte_ Value) Fills in the contents of a Pipe with one byte.

Parameters:-Pipe_ ID, in System_ Pipe[0]-Pipe_ Index,
in System_ Pipe[1]-Byte_ Value, in System_ Pipe[2]
Returns: (nothing)Actions:-Searches for PCBoPCB__
Pointer=FIRST PCB_ POINTERoChecks that PCB.Pipe__
ID=Pipe_IDolf not, PCB__Pointer=PCB.Next__
PCBoRepeat search until an appropriate PCB is found.

Checks that the Pipe is not in use.

oPCB.Pipe__ Control<>IN__USE-Updates Pipeo
(PCB.Pipe__Base__ Address+ Pipe_Inext)=Byte__
ValueoPCB.Pipe_ Control=IN__ USE

SIOS_ Read_ Byte_ From_ Pipe(Pipe_ID, Pipe_ Index)
Retrieves a byte from the contents of a Pipe.

Parameters:-Pipe_ ID, in System_ Pipe[0]-Pipe_ Index,
in System_ Pipe[1]Returns:- Byte, in System_ Pipe[2]
Actions:-Searches for PCBoPCB_ Pointer =FIRST__PCB__
POINTERo0Checks that PCB.Pipe_ ID=Pipe_IDolf not,
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PCB__Pointer=PCB.Next_ PCBoRepeat search until an
appropriate PCB is found.

Read PipeoByte=(PCB.Pipe_ Base Address+Pipe
Index)

SIOS__Post_ Port_ Request(Request__Port_ Mask)
Sends message requesting exclusive access to digital Input/
Output portsParameters:-Request Port Mask, in System__
Pipe [0.PORT_, pyrrc 1]Returns: (nothing)Actions:-
Searches for PIB of the Port_ Manager taskoPCB_ Pointer=
PORT_MANAGER__PIPE_ BASE__ ADDRESS-Checks
that the Pipe is not in use.

Updates Pipe’s control state.
oPCB.Pipe__Control=PORT__REQUEST__POSTED

SIOS_ Post_ Port_ Release(Release_ PortMask) Sends
message to release a digital 1/O port.

Parameters:-Release_ Port_ Mask, in System_ Pipe[0]
..PORT_BYTES-1]Returns: (nothing)Actions:-Searches
for PIB of the Port Manager taskoPCB_ Pointer=PORT _
MANAGER_ PIPE_ BASE__ ADDRESS-Checks that the
Pipe is not in use.

Updates Pipe’s control state.

oPCB.Pipe__Control=PORT__RELEASE_ POSTED

SIOS_ Post__Port_Input_ Setting(Input_ Port_ Mask)
Sends request message to digital I/O ports selected as input
ports so that port events may be generated in case of a
change in their state.

Parameters:Input_ Port_ Mask, in System_ Pipe
[0..PORT_BYTES-1]Returns: (nothing) Actions:-Searches
for PIB of the Port_ Manager task.

oPCB_ Pointer=PORT_ MANAGER_PIPE BASE
ADDRESS-Checks that Pipe is not in use.

Updates Pipe’s control state.

oPCB.Pipe__Control=PORT__INPUT__SETTING
POSTED

SIOS_ Post__Port_Idle_ Setting(Idle_ Port_ Mask)
Sends request message to digital I/O ports selected as input
ports so that port events may be generated in case of a
change in their state. A change is detected by comparing the
current state of the port against the IDLE value that exists on
the Pipe.

Parameters:-Idle_ Port__ Mask, in System_ Pipe
[0..PORT _BYTES-1]Returns: (nothing) Actions:-Searches
for PIB of the Port_ Manager task.

oPCB__Pointer=PORT_MANAGER__PIPE_ BASE__
ADDRESS-Checks that the Pipe is not in use.

Updates Pipe’s control stateoPCB.Pipe_ Control=
PORT_IDLE_SETTING_ POSTED

SIOS_ Post_Port Data (Port_Data Value)Sends mes-
sage requesting that data be put into digital I/O ports.

Parameters:-Port__ Data_ Value, in System_ Pipe
[0..PORT _BYTES-1]Returns: (nothing) Actions:-Searches
for PIB of the Port_ Manager task.

oPCB__Pointer=PORT_MANAGER__PIPE_ BASE__
ADDRESS-Checks that Pipe is not in use.

Updates Pipe’s control state.

PCB.Pipe__Control=PORT__DATA_ POSTED

SIOS_ Post_ Port_ Read ()Sends message requesting that
data be read from digital I/O ports.

Parameters: (non)Returns:-Port Data_ Value, in
System__ Pipe[0.PORT_BYTES-1] Actions:-Searches for
PIB of Port Manager task.

oPCB__Pointer=PORT_MANAGER__PIPE_ BASE__
ADDRESS-Checks that the Pipe is not in use.
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Updates Pipe’s control state.

oPCB.Pipe_ Control=PORT READ_POSTED

SIOS__ Check_ Free_ Memory_ Block(Block__Size)
Checks the availability of a continous data memory block.

Parameters:-Block _Size, in System_ Pipe[0]Returns:-
YES/NO, in System_ Pipe[1] Actions:-Compares Block
Size with Memory_Remainder

SIOS__Read_ Program_ Memory)PM_ Pointer, Block
Size, Pipe_ ID) Read block of program memory and puts it
into a Pipe.

Parameters:-PM__Pointer, in System_ Pipe[0.PM__
POINTER _SIZE-1]-Block_Size, in System_ Pipe[PM__
POINTER__SIZE]-Pipe_ID, in System_ Pipe[PM__
POINTER__SIZE+1]Returns: (nothing)Actions:-Searches
for PCBoPCB_ Pointer=FIRST_PCB_ POINTERoChecks
that PCB.Pipe_ ID=Pipe_IDolf not, PCB_ Pointer=
PCB.Next_ PCBoRepeat search until an appropriate PCB is
found.

Checks that there is enough free space in the Pipe to store
the data block.

oPCB.Pipe_ Size>=Block_Size-Determines the type of
memory to be read depending on the range of memory where
the memory block to be read resides.

Select the appropriate reading procedure, according to the
type of memory to be read.

Read bytes into program memory and put them into a
Pipe.

SIOS_ Logic_ Function(Logic_ Function, Buffer_Size,
BufferA_Pointer, BufferB_ Pointer) Carries out the speci-
fied logic function between two data buffers of same length.

Parameters:-Logic_ Function, in System_ Pipe[0]-
BufferSize, in Sysem_ Pipe[1]- BufferA_Pointer in
System_ Pipe[2..1+DM__ POINTER _SIZE]-BufferB__
Pointer, in System_ Pipe[2+DM__ POINTER_SIZE..
142*DM_ POINTER _ SIZE]Returns:-Result is put into
Buffer  AActions:-Determines what function is to be car-
ried out.

Reads bytes from both buffers.

Executes function using read bytes as parameters.

Stores results in the byte in buffer  A.

SIOS __ADD_ Function(Buffer Size, BufferA Pointer,
BufferB_ Pointer) Executes an arithmetic ADD between two
data buffers of same length.

Returns:-Results goes into Buffer AParameters:-
Buffer_Size, in System_ Pipe[0]- BufferA Pointer, in
System_ Pipe[1.. DM_POINTER_SIZE]-BufferB__
Pointer, in System_ Pipe [DM__POINTER_SIZE+
1.2*DM_ POINTER_SIZE]Actions:-Reads bytes from
each buffer, starting with the smallest index.

Executes ADD between read bytes (taking CARRY into
consideration)-Stores results in Buffer A byte.

SIOS_SUB_ Function(Buffer Size, BufferA Pointer,
BufferB_ Pointer) Executes an arithmetic SUB (subtraction)
between two data buffers of same length.

Parameters:-Buffer Size, in System_ Pipe[0 -BufferA
Pointer, in System_ Pipe[1.. DM__POINTER_SIZE]-
BufferB_ Pointer, in System_ Pipe[DM__ POINTER _
SIZE+1..2* DM_ POINTER _ SIZEJReturns:-Results goes
into Buffer AActions:-Reads bytes from each buffer, start-
ing with the smallest index.

Executes SUB between read bytes (taking CARRY into
consideration)-Stores results in Buffer A byte.

CONCLUSION, RAMIFICATIONS AND SCOPE
OF INVENTION

Thus, the reader will see that SIOS is a multitasking
operating system capable of operating on low processing
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power platforms, such as 8-bit microprocessors. In addition,
the memory resources it requires for full functionality are
very reduced so as to permit the concurrent execution of
operating system functions and application task within the
same microprocessor memory space. The simplicity of pre-
sented algorithms facilitates the ready implementation of
SIOS on several different microprocessor platforms.

While our above description contains many details, these
should not be construed as limitations to the scope of the
invention, but rather as an exemplification of one preferred
embodiment thereof. Obviously, modifications and alter-
ations will occur to others upon a reading and understanding
of this specification. For example, a higher degree of robust-
ness can be achieved using a dynamic task priority scheme
so that low priority tasks need not wait for a long time even
if high-priority task are present. The dynamic priority
scheme can augment the priority of low priority tasks as wait
time increases. Eventually, low priority tasks will acquire
higher priorities and receive control.

In addition, the OS can be further equipped with a high
priority task that implements an external communication
buffer that allows the existence of a command line style-like
interface. Using such interface, a user could tell the OS to
carry out specific actions, such as task activation and
deactivation, read memory blocks, update task program
code, monitoring of system error flags, modify the state of
an event, and many others. The description above is
intended, however, to include all such modifications and
alterations insofar as they come within the scope of the
appended claims or the equivalents thereof.

What is claimed is:

1. A method for architecture for a multitasking operating
system, the method comprising the steps of: a) a processing
Kernel b) controlling the execution of each task with a task
control block with every task comprises one block and with
a plurality of task control blocks consisting of the group of
Task Information Block, the Event Control Block, the Pipe
Control Block, the Data Memory Control Block, Task Con-
trol Block, Task Data Memory, Port Information Block,
arranged in a dynamic chain and containing the following
fields: i) Task Identifier which contains the identifier of the
task and initialized when the task is installed into the
Kernel’s line of execution; ii) Status/Priority field which
contains the task’s state and priority information and is fixed
when the task is installed on the Kernel’s line of execution;
iif) a Task Next Instruction Pointer which stores a pointer to
Program Memory where the next instruction associated with
the task and update every time a task yield control to the
Kernel; iv) a Task Start Instruction Pointer that contains the
pointer to Program Memory where the first instruction
associated with the task and is installed in the Kernel’s line
of execution with the value indicated by a Task Header; v)
a Ready_ Wait Time field which is the task waiting time in
Ready State which value is updated by the Kernel; vi) an
Event Identifier that contains the event identifier for which
a task is waiting to switch from the WAIT to the READY
state and which is updated when the task waits for an event;
vii) an Event Control field that contains the event control
value that shows that an event is active and is updated when
a task starts its wait for an event; viii) a Next Task Control
Block Pointer that contains the pointer to Data Memory of
the next Task Control Block in the dynamic chain of Task
Control Blocks, if the value is NULL, it means that there are
not other Task Control Blocks on the dynamic chain; c)
Controlling events associated with a task using a Task
Information Block with every task comprising one block and
with a plurality of Task Information Blocks arranged in a
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dynamic chain and with containing the following fields: i) a
Task Identifier that contains the identifier to the correspond-
ing task and is set when the task is installed in the Kernel’s
line of execution; ii) a Pipe Identifier that contains a pointer
to the Pipe that a task uses for communication purposes, if
it has a NULL value it means the task has not been assigned
the Pipe and is initialized when a task request the Pipe; iii)
a Mutual Exclusion Identifier contains the identifier of the
mutually exclusive event that a task owns, if the value is
NULL then no mutually exclusive event has been assigned
to the task and it is initialized when a task request a mutually
exclusive event; and iv) a Next Task Information Block
Pointer that contains a data memory pointer to the next Task
Information Block Task Information Block chain, if the
value if NULL, it means no next Task Information Block
exists in the chain and it is updated by the Kernel when the
current next Task Information Block is the last on the next
Task Information Block chain and a new next Task Infor-
mation Block is created; d) Controlling events associated
with a task using a Event Control Block with every event
comprising one block and with a plurality of Event Control
Blocks arranged in a dynamic chain and with the following
fields: 1) an Event Identifier that contains the identifier of the
event being expected by a task so that it can switch from the
WAIT to the READY task state and is initialized when an
event is created; i) an event’s “Control & Status” field
contains information about the event, it is updated by the
task that controls the event and is watched by the Kernel to
decide whether an event has been signaled by comparing it
with the event’s Event Control field within the Task Con-
trol Block; iii) a Next Event Control Block Pointer that
contains the data memory pointer to the next Event Control
Block in the Event Control Block chain and it is updated by
the Kernel when the current Event Control Block is the last
on the Event Control Block chain and a new Event Control
Block is created; e) Controlling a task’s communication
pipes with a Pipe Control Block with every pipe comprising
one block and with a plurality of Pipe Control Blocks
arranged in a dynamic chain; i) a Pipe Identifier which
contains the identifier of the Pipe created on memory; ii) a
Pipe Data Memory Base Address contains a data memory
pointer to the first byte on the Pipe and is initialized when
the Pipe is created; iii) a Pipe Size field contains the number
of data memory bytes that a Pipe occupies and is initialized
when the Pipe is created; and iv) a Next Pipe Control Block
Pointer field contains a data memory pointer to the next Pipe
Control Block in the dynamic chain of Pipe Control Blocks,
if this field is NULL, it means there is no next Pipe Control
Block on the dynamic chain and the value is updated by the
Kernel when the current Pipe Control Block is the last on the
Pipe Control Block chain a new Pipe Control Block is
created; f) Managing memory assigned to a task with a Data
Memory Control Block with a plurality of Data Memory
Control Blocks arranged in a chain and containing the
following fields; i) a Task Identifier field which contains the
identifier of the task, it is initialized when the block is
created when the task is installed on the Kernel’s line of
execution; ii) a Task Data Memory Base Address is a data
memory pointer to the first byte in the memory block
assigned to a task and are initialized when Task Memory
Data is assigned; and iii) Task Data Memory Size which
contains the number of data memory bytes of the assigned
memory block and is initialized when the block is created;
iv) a Next Task Data Memory Control Block Pointer is a data
memory pointer to the next Data Memory Control Block in
the Data Memory Control Block chain, if it has a NULL
value, it means no next Data Memory Control Block exists
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and is updated by the kernel when the current Data Memory
Control Block is the last Data Memory Control Block on the
Data Memory Control Block chain and a new Data Memory
Control Block is created g) Task Data Memory blocks which
are data memory blocks associated with each task in which
a task’s Task Data Memory block stores its context on one
Task Data Memory block before yielding computer means
handling to the Kernel and has the following fields; i) a Task
Identifier contains the identifier of the task and is initialized
when the block is created when the task is installed on the
Kernel’s line of execution; ii) a plurality of task context
registers; and iii) a plurality of task data registers, j) Port
Information Blocks which are memory blocks used to
handle a microprocessor mean’s input and output ports and
containing the following fields; i) an Assignation_ Port
Mask field that contains information of microprocessor
mean’s inputs/outputs ports assigned to tasks; ii) a Input__
Selection_ Mask contains information of the direction of
communications in inputs/outputs ports; and iii) a Change__
State field that contains information related to a change in
the value of the microprocessor’s inputs/outputs bits; k) the
Kernel use Kernel Control Registers which are used to store
required operation data and containing the following fields;
i) a Free Data Memory Remainder field that contains the
number of free bytes in data memory; ii) a Max_ Priority
register that stores the maximum priority assigned to a task
used in the process of searching for the READY task with
highest priority; iii) a Max_ Wait Time register that stores
the maximum wait time associated with a task and used in
the process of searching for the READY task with the
highest priority; iv) a Task_ID_ Winner identifier which is
the READY task of highest priority; v) an Instruction
Pointer to program memory that contains the current instruc-
tion that is to be decoded by the Parser; vi) a Task Control
Block Pointer which is a data memory pointer to the location
of the current Task Control Block; vii) an Event Control
Block Pointer which is a data memory pointer to the location
of the current Event Control Block; viii) a Data Memory
Control Block Pointer which is a data memory pointer to the
location of the current Data Memory Control Block; ix) a
Task Information Block Pointer which is a data memory
pointer to the current Task Information Block; x) a Pipe
Control Block Pointer which is a data memory pointer to the
location of the current Pipe Control Block; xi) a Last Task
Control Block Pointer which is a data memory pointer to the
location of the last Task Control Block in the Task Control
Block chain; xii) a Last Event Control Block Pointer which
is a data memory pointer to the location of the last Event
Control Block in the Event Control Block chain; xiii) a Last
Task Information Block Pointer which is a data memory
pointer to the location of the last Task Information Block on
the Task Information Block chain; xiv) a Last Pipe Control
Block Pointer which is a data memory pointer to the location
of the last Pipe Control Block on the Pipe Control Block
chain; and xv) a Last Data Memory Control Block Pointer
which is a data memory pointer to the location of the last
Data Memory Control Block in the Data Memory Control
Block chain; 1) a plurality of Task Allocation Table which are
tables of pointers that accurately identify the beginning of
the memory blocks associated with a task and containing the
following fields; i) a Task Condition field which indicates
the initial operation condition associated with the task that a
Task Allocation Table entry points with the possible condi-
tions of SLEEP, to indicate that the task is not to be inserted
in the Kernel’s line of execution at system start time and
WAKE, to indicate that the task must be installed on the
Kernel’s line of execution upon system startup; and; ii) a
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Task Start Instruction Pointer which is a program memory
pointer to the location of a task’s Task Header; k) Starting
a task’s program code section with a Task Header which
provides basic information about the task and contains the
following fields; i) a Task Identifier contains the identifier of
the task; ii) a Status/Priority field that contains the task’s
state information and assigned priority; iii) a Task Data
Memory Size field that contains the number of bytes that the
assigned data memory block occupies; and iv) the Task
Program Code which is the task’s program code that is to be
executed by the Kernel; m) a Port Stat Update control block
process which carries out reading and verification of a
microprocessor’s input ports to set up port events, which can
be signaled when the state of an input port changes; n) a Task
State Update control block process which carries out reading
and verification of events of update the state of tasks on the
WAIT state and switch them to the READY state if their
expected event is signaled including the following steps: i)
the pointer positioned to the beginning of the Task Control
Block chain retrieved with all the Task Control Blocks in the
Task Control Block chain and examining the state associated
with every task; ii) Checking to see if a task is in the
SUSPEND state, if it is then its state is not modified in this
process and the task control block pointer to the next link in
the Task Control Block chain if the next link is NULL then
it is the end of the chain; iii) Checking to see if a task is in
READY state, if it is this means that the current task is not
expecting any events; iv) Checking to see if a task is in
WAIT state, if it is then the associated event must be
examined, the pointer to the beginning of the Event Control
Block chain is retrieved and examine until the expected
event is found, if the current Event Control Block corre-
sponds to the event, its state is examined, if it is activated
then the state of the task in WAIT state is changed to a
READY state, if the end of the Event Control Block chain
is reached without finding the event, a system error is
flagged; o) a Priority Task Ordering process which selects
the task in the READY state that is to be switched to the
ACTIVE state using the follow criteria the task priority and
the amount of time in which a task has been in the READY
state using the following steps: 1) retrieving the pointer from
the beginning of the Task Control Block; ii) examining all
the tasks in the Task Control Block that are in the READY
state; iii) initializing the max__ priority, max_ wait_ time and
task_id_ winner fields; iv) checking sequentially all task
states, if a task is not READY, the next task in the chain is
checked, if a task is READY its priority is checked against
Max_ Priority, if the task’s priority is higher, store task’s
data in the Max_ Priority, Max_ Wait Time and Task ID
Winner; if the task’s priority is equal to the Max_ Priority
field, then compare the task’s time on the WAIT state to the
Max_ Wait_ Time field, if the current task’s time on the
WAIT state is higher, store task’s data in the Max_ Priority,
Max_Wait Time and Task ID_Winner; and v) repeating
the previous step until the last link in the Task Control Block
chain is examined, and a Context and Control Restore
process which executes the restoration of all context vari-
ables associated with the active task and yields computer
means control to a Parser, which continues the execution of
the active task’s instructions.

2. A system for architecture for a multitasking operating
system, comprising: a) a processing Kernel, b) controlling
the execution of each task with a task control block with
every task comprises one block and with a plurality of task
control blocks consisting of the group of Task Information
Block, the Event Control Block, the Pipe Control Block, the
Data Memory Control Block, Task Control Block, Task Data
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Memory, Port Information Block, arranged in a dynamic
chain and containing the following fields: i) Task Identifier
which contains the identifier of the task and initialized when
the task is installed into the Kernel’s line of execution; ii)
Status/Priority field which contains the task’s state and
priority information and is fixed when the task is installed on
the Kernel’s line of execution; iii) a Task Next Instruction
Pointer which stores a pointer to Program Memory where
the next instruction associated with the task and updated
every time a task yield control to the Kernel; iv) a Task Start
Instruction Pointer that contains the pointer to Program
Memory where the first instruction associated with the task
and is installed in the Kernel’s line of execution with the
value indicated by a Task Header; v) a Ready  Wait Time
field which is the task waiting time in Ready State which
value is updated by the Kernel; vi) an Event Identifier that
contains the event identifier for which a task is waiting to
switch from the WAIT to the READY state and which is
updated when the task waits for an event; vii) an Event
Control field that contains the event control value that shows
that an event is active and is updated when a task starts its
wait for an event; viii) a Next Task Control Block Pointer
that contains the pointer to Data Memory of the next Task
Control Block in the chain of Task Control Blocks, if the
value is NULL, it means that there are not other Task
Control Blocks on the chain ¢) Controlling events associated
with a task using a Task Information Block with every task
comprising one block and with a plurality of Task Informa-
tion Blocks arranged in a dynamic chain and with containing
the following fields; i) a Task Identifier that contains the
identifier to the corresponding task and is set when the task
is installed in the Kernel’s line of execution; ii) a Pipe
Identifier that contains a pointer to the Pipe that a task uses
for communication purposes, if it has a NULL value it
means the task has not been assigned the Pipe and is
initialized when a task requests the Pipe; iii) a Mutual
Exclusion Identifier contains the identifier of the mutually
exclusive event that a task owns, if the value is NULL then
no mutually exclusive event has been assigned to the task
and it is initialized when a task requests a mutually exclusive
event; and iv) a Next Task Information Block Pointer that
contain a data memory pointer to the next Task Information
Block Task Information Block chain, if the value is NULL,
it means no next Task Information Block exists in the chain
and it is updated by the Kernel when the current next Task
Information Block is the last on the next Task Information
Block chain and a new next Task Information Block is
created; d) Controlling events associated with a task using a
Event Control Block with every event comprising one block
and with a plurality of Event Control Blocks arranged in a
dynamic chain and with the following fields; i) an Event
Identifier that contains the identifier of the event being
expected by a task so that it can switch from the WAIT to the
READY task state and is initialized when an event is
created; ii) an event’s “Control & Status” field contains
information about the event, it is updated by the task that
controls the event and is watched by the Kernel to decide
whether an event has been signaled by comparing it with the
event’s Event_ Control field within the Task Control Block;
iii) a Next Event Control Block Pointer that contain the data
memory pointer to the next Event Control Block in the Event
Control Block chain and it is updated by the Kernel when the
current Event Control Block is the last on the Event Control
Block chain and a new Event Control Block is created; ¢)
Controlling a task’s communication pipes with a Pipe Con-
trol Block with every pipe comprising one block and with a
plurality of Pipe Control Blocks arranged in a dynamic
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chain; i) a Pipe Identifier which contains the identifier of a
Pipe created on memory; ii) a Pipe Data Memory Base
Address contain a data memory pointer to the first byte on
the Pipe and is initialized when the Pipe is created; iii) a Pipe
Size field contains the number of data memory bytes that a
Pipe occupies and is initialized when the Pipe is created; and
iv) a Next Pipe Control Block Pointer field contains a data
memory pointer to the next Pipe Control Block in the chain
of Pipe Control Blocks, if this field is NULL, it means there
is no next Pipe Control Block on the chain and the value is
updated by the Kernel when the current Pipe Control Block
is the last on the Pipe Control Block chain a new Pipe
Control Block is created; f) Managing memory assigned to
a task with a Data Memory Control Block with a plurality of
Data Memory Control Blocks arranged in a chain and
containing the following fields; i) a Task Identifier which
contains the identifier of the task, it is initialized when the
block is created when the task is installed on the Kernel’s
line of execution; ii) a Task Data Memory Base Address is
a data memory pointer to the first byte in the memory block
assigned to a task and are initialized when Task Memory
Data is assigned; and iii) Task Data Memory Size which
contains the number of data memory bytes of the assigned
memory block and is initialized when the block is created;
iv) a Next Task Data Memory Control Block Pointer is a data
memory pointer to the next Data Memory Control Block in
the Data Memory Control Block chain, if it has a NULL
value, it means no next Data Memory Control Block exists
and is updated by the kernel when the current Data Memory
Control Block is the last Data Memory Control Block on the
Data Memory Control Block chain and a new Data Memory
Control Block is created, g) a Task Data Memory blocks
which are data memory blocks associated with each task in
which a task’s Task Data Memory block stores its context on
one Task Data Memory block before yielding computer
means handling to the Kernel and has the following fields;
i) a Task Identifier contains the identifier of the task and is
initialized when the block is created when the task is
installed on the Kernel’s line of execution; ii) a plurality of
task context registers; and iii) a plurality of task data
registers; j) Port Information Block which are memory
blocks used to handle a microprocessor mean’s input and
output ports and containing the following fields; i) an
Assignation_ Port_ Mask field that contains information of
microprocessor mean’s inputs/outputs ports assigned to
tasks; ii) a Input_Selection_ Mask contains information of
the direction of communications in inputs/outputs ports; and
iii) a Change_ State field that contains information related to
a change in the value of the microprocessor’s inputs/outputs
bits; k) the Kernel use Kernel Control Registers which are
used to store required operation data and containing the
following fields; i) a Free Data Memory Remainder field that
contains the number of free bytes in data memory; ii) a
Max_ Priority register that stores the maximum priority
assigned to a task used in the process of searching for the
READY task with highest priority; iii) a Max_ Wait _Time
register that stores the maximum wait time associated with
a task and used in the process of searching for the READY
task with the highest priority; iv) a Task_ID_ Winner Iden-
tifier which is the READY task of highest priority; v) an
Instruction Pointer to program memory that contains the
current instruction that is to be decoded by the Parser; vi) a
Task Control Block Pointer which is a data memory pointer
to the location of the current Task Control Block; vii) an
Event Control Block Pointer which is a data memory pointer
to the location of the current Event Control Block; viii) a
Data Memory Control Block Pointer which is a data
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memory pointer to the location of the current Data Memory
Control Block; ix) a Task Information Block Pointer which
is a data memory pointer to the current Task Information
Block; x) a Pipe Control Block Pointer which is a data
memory pointer to the location of the current Pipe Control
Block; xi) a Last Task Control Block Pointer which is a data
memory pointer to the location of the last Task Control
Block in the Task Control Block chain; xii) a Last Event
Control Block Pointer which is a data memory pointer to the
location of the last Event Control Block in the Event Control
Block chain; xiii) a Last Task Information Block Pointer
which is a data memory pointer to the location of the last
Task Information Block on the Task Information Block
chain; xiv) a Last Pipe Control Block Pointer which is a data
memory pointer to the location of the last Pipe Control
Block on the Pipe Control Block chain; and xv) a Last Data
Memory Control Block Pointer which is a data memory
pointer to the location of the last Data Memory Control
Block in the Data Memory Control Block chain; 1) a
plurality of Task Allocation Table which are tables of
pointers that accurately identify the beginning of the
memory blocks associated with a task and containing the
following fields; i) a Task Condition field which indicates
the initial operation condition associated with the task that a
Task Allocation Table entry points with the possible condi-
tions of SLEEP, to indicate that the task is not to be inserted
in the Kernel’s line of execution at system start time and
WAKE, to indicate that the task must be installed on the
Kernel’s line of execution upon system startup; and ii) a
Task Start Instruction Pointer which is a program memory
pointer to the location of a task’s Task Header; k) Starting
a task’s program code section with a Task Header which
provides basic information about the task and contains the
following fields; i) a Task Identifier contains the identifier of
the task; ii) a Status/Priority field that contains the task’s
state information and assigned priority; iii) a Task Data
Memory Size field that contains the number of bytes that the
assigned data memory block occupies; and iv) the Task
Program Code which is the task’s program code that is to be
executed by the Kernel; and m) a Port State Update control
block process which carries out reading and verification of
a microprocessor’s input ports to set up port events, which
can be signaled when the state of an input port changes; n)
a Task State Update control block process which carries out
reading and verification of events to update the state of tasks
on the WAIT state and switch them to the READY state if
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their expected event is signaled including the following
steps: i) the pointer to the beginning of the Task Control
Block chain retrieved with all the Task Control Blocks in the
Task Control Block chain and examining the state associated
with every task; ii) Checking to see if a task is in the
SUSPEND state, if it is then its state is not modified in this
process and the task control block pointer points to the next
link in the Task Control Block chain if the next link is NULL
then it is the end of the chain; iii) Checking to see if a task
is in READY state, if it is this means that the current task is
not expecting any events; iv) Checking to see if a task is in
WAIT state, if it is then the associated event must be
examined, the pointer to the beginning of the Event Control
Block chain is retrieved and examine until the expected
event is found, if the current Event Control Block corre-
sponds to the event, its state is examined, if it is activated
then the state of the task in WAIT state is changed to a
READY state, if the end of the Event Control Block chain
is reached without finding the event, a system error is
flagged; o) a Priority Task Ordering process which selects
the task in the READY state that is to be switched to the
ACTIVE state using the follow criteria the task priority and
the amount of time in which a task has been in the READY
state using the following steps: 1) retrieving the pointer from
the beginning of the Task Control Block; ii) examining all
the tasks in the Task Control Block that are in the READY
state; iii) initializing the max__ priority, max_ wait_ time and
task id_winner fields; iv) checking sequentially all task
states, if a task is not READY, the next task in the chain is
checked, if a task is READY its priority is checked against
Max_ Priority, if the task’s priority is higher, store task’s
data in the Max_ Priority, Max_ Wait_ Time and Task ID__
Winner; if the task’s priority is equal to the Max_ Priority
field, then compare the task’s time on the WAIT state to the
Max_ Wait_ Time field, if the current task’s time on the
WAIT state is higher, store task’s data in the Max_ Priority,
Max_ Wait_ Time and Task_ID_ Winner; and v) repeating
the previous step until the last link in the Task Control Block
chain is examined, and a Context and Control Restore
process which executes the restoration of all context vari-
ables associated with the active task and yields computer
means control to a Parser, which continues the execution of
the active task’s instructions.
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